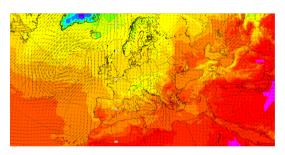
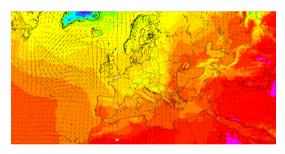
Causal Discovery for Extreme Events


Nicola Gnecco

Gatsby Computational Neuroscience Unit, UCL, London


ICES Biennial Workshop VII, Geneva

Oct 1-4, 2024

Machine Learning is advancing at a notable speed

 \rightarrow ECMWF. ECMWF Integrated Forecasting System. 2024.

 \rightarrow Google DeepMind. GraphCast. 2024.

At the same time, it can fail in unexpected ways

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Michael Roberts

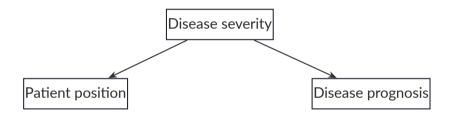
Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-Bibiane Schönlieb

Nature Machine Intelligence 3, 199–217 (2021) | Cite this article

Need to control flexibility of machine learning models

Causality as theory of intervention

• Control model flexibility with causal inference


Causality as theory of intervention

- Control model flexibility with causal inference
- Goal: Discover causal model to perform downstream tasks

Causality as theory of intervention

- Control model flexibility with causal inference
- Goal: Discover causal model to perform downstream tasks
- Advantage: Describe how a system behaves under intervention

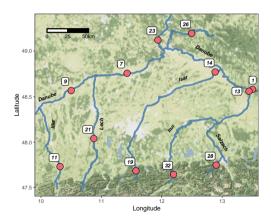
Advantage of knowing a causal model

Advantage of knowing a causal model

Discovering causal models is hard... but

Discovering causal models from data is hard

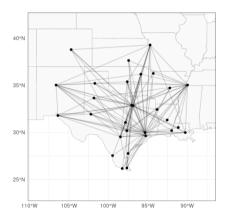
Discovering causal models is hard... but


- Discovering causal models from data is hard
- However, in some situations it is possible

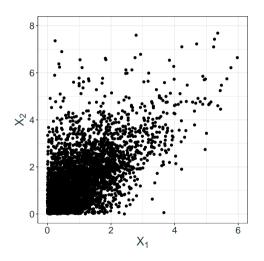
Discovering causal models of extreme events

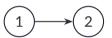
In real-world systems, might want to discover causal models of extreme events.

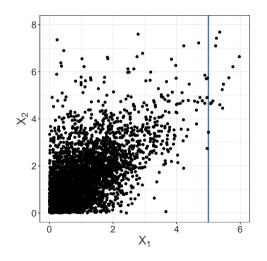
Discovering causal models of extreme events

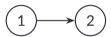

In real-world systems, might want to discover causal models of extreme events.

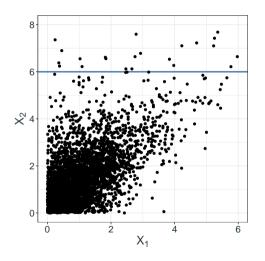
Example 1: Learn causal structure of river network during floods

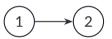

Discovering causal models of extreme events


In real-world systems, might want to discover causal models of extreme events.


Example 2: Learn causal structure of flight network during disruptions


Exploit asymmetry in heavy-tailed systems


Exploit asymmetry in heavy-tailed systems



A large cause is always associated with a large effect

Exploit asymmetry in heavy-tailed systems

A large effect is **not** always associated with a large cause

Causal discovery for extremes is getting attention

• Novel methodologies in causal discovery for extremes

Causal discovery for extremes is getting attention

- Novel methodologies in causal discovery for extremes
- Most research focuses on the theoretical aspects of these methods

Causal discovery for extremes is getting attention

- Novel methodologies in causal discovery for extremes
- Most research focuses on the theoretical aspects of these methods
- Focus on end-to-end algorithms rather than integrating with ML models

Moving forward

• In what domains can these methods have an impact?

Moving forward

- In what domains can these methods have an impact?
- How can these methods be integrated with existing ML models?

Moving forward

- In what domains can these methods have an impact?
- How can these methods be integrated with existing ML models?
- Example: Can flexible ML models for weather forecasting benefit from causal discovery from extremes?

Nicola Gnecco