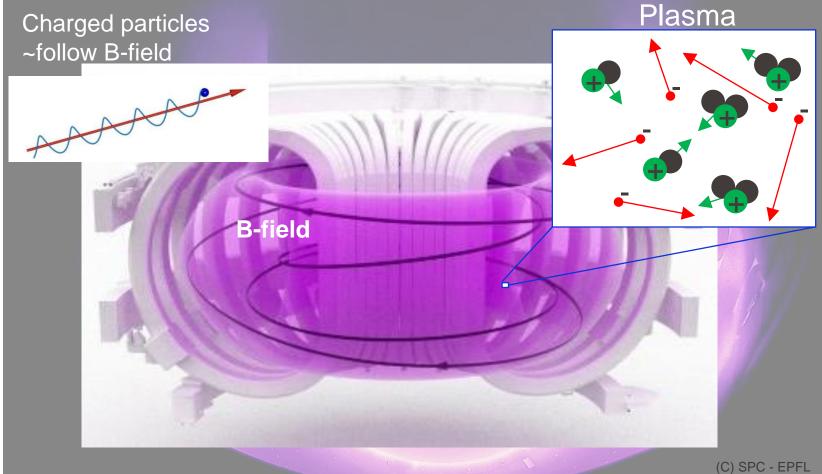


# **Nuclear Fusion: Status and Outlook**

Laurent Villard Swiss Plasma Center EPFL

 École polytechnique fédérale de Lausanne

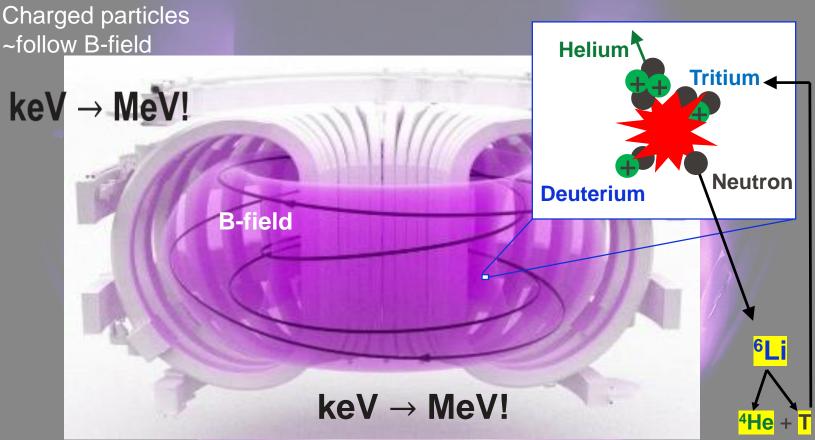
ICES Geneva 4 October 2024


EPFL



EPFL

**Swiss Plasma Center** 

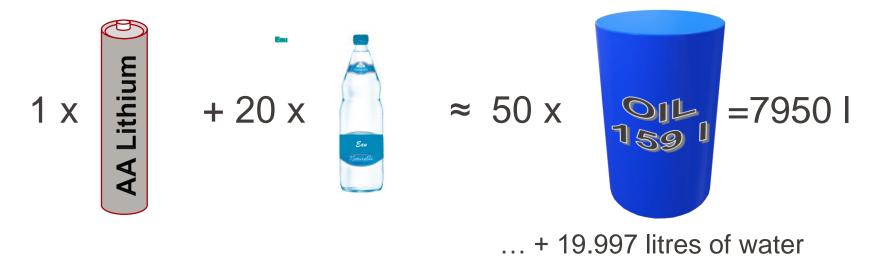

## **Magnetic confinement fusion – main idea**



3



## Magnetic confinement fusion – main idea




(C) SPC - EPFL

# **EPFL** The quest for fusion power

The goal of the worldwide fusion research effort is to master fusion on earth and to develop a safe, clean and essentially inexhaustible source for baseload electricity

Lithium + Deuterium  $\rightarrow$  Helium + energy



Swiss Plasma Center

### Results: JET DT, NIF

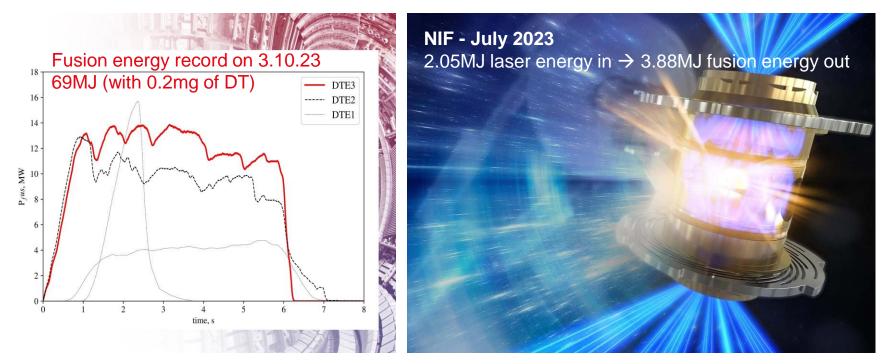



Image: LLNL / NIF

## Results: JET DT, NIF

Private involvement



7

## Results: JET DT, NIF

### Private involvement

## Political interest



#### **Emmanuel Macron** President of France

The French president wants Europe to become a global leader by 2030 in five strategic sectors including fusion energy

25 April 2024



#### **Christian Ehler** Member of the European Parliament

The Net-Zero Industry Act was approved by the plenary of the European Parliament and includes fusion energy as a strategic technology.

25 April 2024



#### Kadri Simson EU Energy Commissioner

Energy Commissioner said in a conference in Strasbourg: "The time is right to discuss what a possible EU Fusion Strategy could look like."

23 April 2024



#### Ursula von der Leyen President of the European Commission

The Commission President visited the Max Planck Institute for Plasma Physics and stressed the need for a European fusion alliance and a clear regulatory framework for fusion.

11 April 2024



#### G7 Meeting on Energy

Turin 29-30 April 2024

### Results: JET DT, NIF

Private involvement

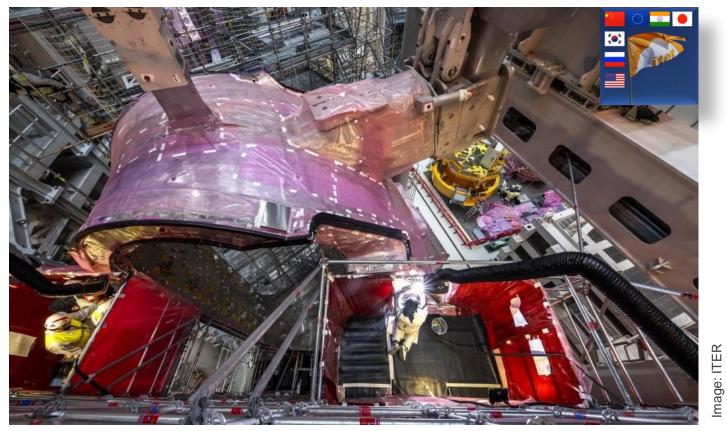
## **Political interest**

Very large developments in some countries – e.g. China, UK



CRAFT centre at ASIPP Hefei. Source: CRAFT.

Future Culham Centre For Fusion Energy ©UKAEA


## **EPFL** ITER - site at end of 2023

**Swiss Plasma Center** 



## **EPFL** ITER – ongoing repairs – vacuum vessel

**Swiss Plasma Center** 



Metal build-up on the regions of the sector 7 bevel affected by dimensional non-conformities

## **EPFL** ITER – ongoing repairs – thermal shield

**Swiss Plasma Center** 



Image: ITER

Thermal shield sets inspected on site and tested for corrosion cracking. The panels with superficial defects are shipped to India for repair (5 out 9 so far).

## **EPFL** ITER and Fusion for Energy - ex. of successful EU procurements

PROJECT PROGRESS

Tritium building completed (December 2023)



#### PROJECT PROGRESS

In process of stacking 3 CS modules (29 Feb 2024)

Fourth CS module arrived in December



#### PROJECT PROGRESS

Last TF coil delivered (December 2023) IO-DA celebration to take place on 15 April.

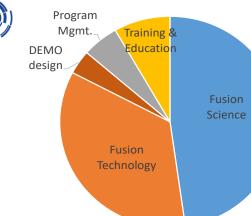




#### EU VV MANUFACTURING

First European vacuum vessel sector passed its leak test (February 2024)

Images: F4E / ITER


## **EPFL** The EUROfusion consortium



**Swiss Plasma Center** 

31 Research Institutions150 Universities5000 Staff800 students

29 countries





## **EPFL** JET has ended its operations after 40 years





# Standing Ovation for JET Inventor

# "JET has created a real fusion community"

! March 11, 2024 " EUROfusion news

## **EPFL** Largest tokamak now: JT60-SA, Japan (+Eurofusion)

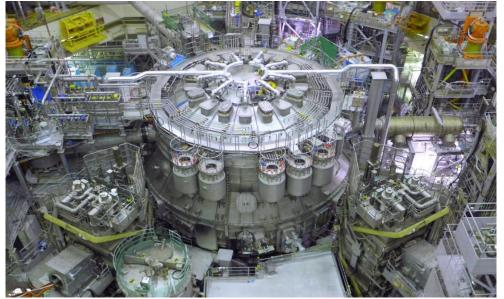



Image: JT60-SA

# JT-60 SA is officially the most powerful Tokamak.

Europe and Japan celebrate breakthrough in paving the way for fusion energy

## EPFL Our Roadmap

#### Plasma Scenarios, Transients, Exhaust & Burning Plasma Regime



TCV





MAST UPGRADE WENDELSTEIN 7-X







# FUSION POWER PLANT

**EURO***fusion* 

DEMO



Breeding Blanker, Remote Handling, Materials, Magnets

## **EPFL** The DEMO step

Demonstration of commercial feasibility, net electricity production (~300MWe for >2h), self-sufficient fuel cycle, safety & waste production

ITER shall validate DEMO physics and part of technological basis but DEMO schedule should be resilient to changes in ITER schedule

Other machines, will play a role for DEMO in reducing uncertainties in physics and technology

Conceptual design of DEMO (tokamak configuration) conducted in EUROfusion



**Swiss Plasma Center** 

Target: operations ~20 years after kick-off



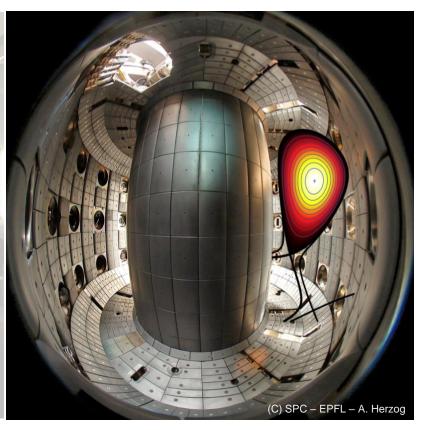
## **EPFL** The Swiss Plasma Center and its mission

National laboratory with international facilities in an academic environment

Aim: make ITER a success

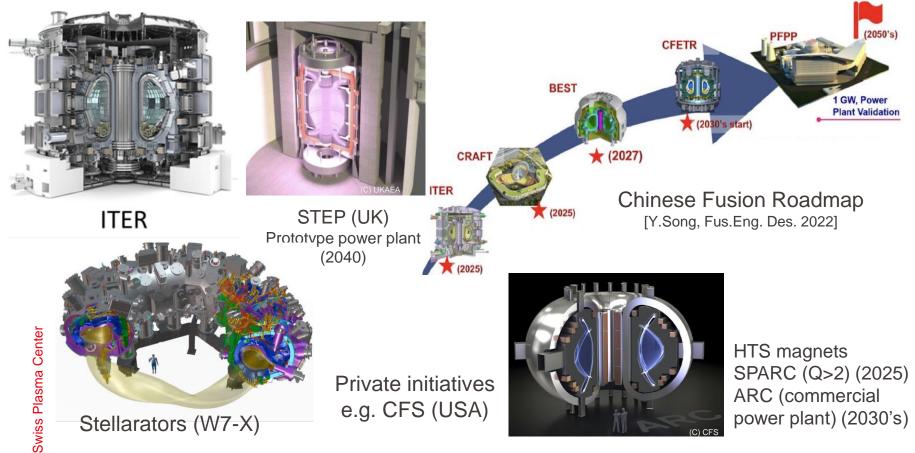
develop the science and technology basis of DEMO prepare the ITER/DEMO generations of scientists and engineers exploit plasma and fusion spinoffs for industry and society




## **EPFL** The TCV tokamak - a EUROfusion facility

Important role in revised Roadmap

### Facilities Review report


«TCV's value to the EUROfusion and world's fusion programmes is high in proportion to its relatively inexpensive cost of operation. It has important roles in **workforce development** and international collaboration, where it continues to develop original techniques and configurations that can be further developed at larger facilities »

SPC is currently training 52 PhD students and employs 33 Post-Docs



## Key initiatives worldwide (magnetic fusion only)

EPFL



See e.g. Theiler et al., "*State of fusion technology and main actors*", Ch. 10 of SFOE report on Technology Monitoring of Nuclear Energy – 2024, available online

# EPFL Conclusions

- There has been a tremendous acceleration of the worldwide effort to make fusion energy a reality.
- This has been triggered by recent milestone successes in public-funded research.
- The private sector is raising substantial funds. Several companies have been created, of which at least some are serious contenders on the race to fusion and/or will contribute substantially to the development of the required technology.
- Publicly funded fusion research has received a huge boost in some countries (China, UK in particular).
- Our roadmap objectives remain essentially the same, but increasingly will rely on public-private partnerships.

# **EPFL** Will fusion energy help to save the planet?

Yes, it will

## When will this happen?

Nobody knows for sure, but recent developments make it a very realistic perspective by ~2050

# **Thank you for your attention!**